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Free-energy formalism for particle adsorption
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The equilibrium properties of particle adsorption is investigated theoretically. The model relies on a free-
energy formulation which allows us to generalize the Maxwell-Boltzmann description to solutions for which
the bulk volume fraction of potentially adsorbed particles is very high. As an application we consider the
equilibrium physical adsorption of neutral and charged particles from solution onto two parallel adsorbing
surfaces.
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I. INTRODUCTION proportional to thickness, whereas in the limit of ladyéhe

The adsorption phenomenon, due to the electrochemic Iectri_c potential_ and the surface density are independent of
interaction between the particles of a system and a surface,%e thickness. It is never_theless clear that the results obtained
present in many experimental setups, such as the adsorpti§ith the phenomenological, coarse-grained free-energy for-
of a perfect gas on a surfaf#] or of charged particles in an malism to systems approaching molecular dimension can
electrolyte[2]. In many physical or chemical system, a betterOnly e trusted as far as general trends are concerned.
understanding of the theoretical equilibrium properties of thﬁ(, It is important to note that_ in the context when severa]
adsorbed particles on a surfa¢see [3] and references <inds of particles are present in the system, as it would be in
therein would thus be useful to interpret the experiments.an electrolyte, we find a particle distribution different from

Several works have been devoted to this question, and Vacfe Fermi-Dirac-like distribution introduced [9]. Actually,

ous models of particle distributions have been bropose he Fermi-Dirac distribution takes naturally into account the
P prop ccupation of the adsorption sites. Yet it misses the mixing

Among these, many assumed a Maxwell-Boltzman particle,n oy contribution which is present in our formalism. As a

distribution(see[3-5]). Barberoet al. [3], for instance, study  consequence, we show that in the limiting case of a weak

the ionic adsorption on a surface due to some electrochemiiecirolyte, the results of the Poisson-Boltzmann approach

cal forces in order to determine the surface density of adxyre recovered by our formalism but not by the Fermi-Dirac

sorbed charges versus the thickness of the sample. This Wogstribution.

helps us to understand the thickness dependence of the an-The paper is organized as follows. In Sec. Il we introduce

isotropic part of the anchoring energy experimentaly obthe mean-field free-energy formalism for neutral particle in

served[6] in a nematic liquid cristal4,7,8]. an isotropic fluid limited by two adsorbing surfaces. In the
However, a limit can be made about the Maxwell- same section the case of the adsorption competition between

Boltzman distribution. Actually, this distribution can only two neutral particles is studied. In Sec. Il we generalize the

correctly describe the distribution properties in the dilute re-free-energy formalism to the study of the ionic adsorption in

gime. But even in this regime, the density is usually large a@ isotropic fluid limited by two adsorbing surfaces, already

the surface itself, exept when the affinity of the particle forstudied by means of the Fermi-Dirac distribution[8)9].

tlhe. surfacells weak. To overcome the restriction to the first Il NEUTRAL PARTICLE ADSORPTION

limit—the dilute case—we propose to apply a free-energy

formalism to the study of the equilibrium properties of neu- A. Theory of a lattice

tral and charged particles adsorption onto two parallel ad- consjderN neutral particles in a slab of thicknedsde-
sorbing surfaces. Another advantage of the free-energy fofimited by two surfaces of are& We divide the slab into
malism lies in the fact that it leads to the genera“zeddiscrete cells of size® (the size of the particbe and each
Poisson-Boltzmann equation introduced &®] which takes  cell is limited to a single-particle occupation. We dllj the
into account the finite size of the ions. In that paper thenumber of sites in the bulk andg the number of surface
behavior of electrolytes solutions close to a charged surfacadsorption sites. In thermodynamic equilibrium, and ng
was studied. In our work, the surface is rather charged by thare the number of particles in the bulk and at the surface,
adsorption of one of the two charges present in the systeniespectively. The volume fraction is thef=n,/N, and the
Within our framework we obtain the electric potential distri- surface density¢s=ns/N,. The conservation of the total
bution from the generalized Poisson-Boltzmann equation, theumber of particleN=ns+nj is also written as

correct equations for the bulk particle distribution, and the a 2a

density of the particles on the surface with respect to the d= 2¢>Sa + ¢(1 _F) (D
thicknessd of the sample. For small thickness, ttalepen-

dences of the electric potential and of the chemical potentialvhich is valid if the bulk volume fraction is uniform. If this
are determined and it is found that the surface density igraction is not uniform(see Sec. ll), relation(1) becomes
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yields the bulk equilibrium volume fraction

1
6N =b= T F (6)

where® is the total volume fraction.

B. Free-energy formalism

We will use the free-energy formalism for the particle
adsorption. It was first introduced by Andelman and co-
workers (for a review sedq11]) to describe the kinetic ad-
sorption of surfactant. This theoretical approach was success- oF
fully applied to the kinetic of nonionic and ionic surfactant 57,5 -
adsorption as well as to the kinetic of surfactant mixture
adsorption. In this formalism, the two equations describingyields the equilibrium adsorption isotherm
both the diffusive transport of surfactant molecules from the 1
bulk solution to the interface and the kinetic of adsorption at bs= PRp—y (7)
the interface itself are derived from a single functional. The 1+e °
scope of the present paper is to apply the free-energy formalyith o=a/kT.

ism to the study of the equilibrium properties of particle  Considering the casg=0, we find the Fermi-Dirac dis-

in which we introduce the dimensional quantitiﬁsﬁ’/kT
and u=u/kT. At the surface the condition

0

adsorption. tribution that can also be written as
Following [11] we write the total free energy as a func-
tional of the volume fraction in the bulié(x) and the density be= ¢
at the interfacep,, * g+ (1-g)e
F() (d-2a)/2 For =0, the number of particle conservati¢h) allows us
s =2f(py) + f o f(p(x))dx, (3) to compute analytically the chemical potential:
—(d-2a)/2 —_—
e*=—a++\a’+bh, (8)
where the bulk free-energy density is written as
where
1 B, - ® - (1 - 2a/d)] + (d - 2a/d)e”
f(d) =3 le(qﬁln ¢+ (1L-@)In(l-P)]- ¢ - 1d a=[ . : 9)
a 2 20
(4)
_1-P)
and the surface free-energy density is equal to b= ® €. (10

1 73 Note that ford=2a we can check thag #=e*(1-®)/P
f(pd) = 5] KTLsIn s+ (1 = pg)In(1 = pg) | — weps — Edﬁ which leads to the expected resgli=®, since all particles
a are localized on the surfaces.

~ 1. >2
_ M%}- (5) - Case®>2a/d
The condition

the paramete® accounts for the energetic preference of the 1> &> 2a/ld (11)

particle to absorb on the surfacg.is the lateral interaction yields for the chemical potential

between two adjacent charges. Note that the main difference

with the free energy introduced ifl1] in the context of . (1-9)

surfactant adsorption lies in the presence of the exact en- D

tropic term in Eq.(4) rather than on an approximate term.

Actually, below as well as above the critical micellar concen-

tration, the free-chain surfactant solution is always dilute, so ¢=0.

that a good approximation for the entropic term $ - o o o -

= ¢ In - . Another difference is due the effect on the finite C_:ondltlon(ll) |mpl_|es a negligible varlat_lon of the equilib-

volume: Eqgs(4) and(5), 7 is the chemical potential at equi- rium volume fraction after the adsorption process. At the

librium. Its value is not imposed by an external reservoir butSurfaces,

is determined by the conservation equatitn In the infinite 1))

volume case considered 1], the chemical potential is QSS:ﬁ

. . : o . (1-d)e

imposed by an external reservoir localized at infinity. This

last condition imposes the equilibrium bulk volume fraction. is independent of the size Even if the surface density of
The variation ofF with respect tog(x), that is, particles is large, the sample is large enough to ensure that

and a bulk volume fraction of
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the bulk volume fraction does not change. This result can 6]
also be obtained from the particle number conservation equa- b= e
tion (1), ®=2¢.a/d+¢(1-2a/d), which in the limitd— oo
gives ¢p=>. from which we deduce
2a
2. Cased<2a/d ¢SF <P,

This condition corresponds to a dilute reginde<1,

where¢<1 so thate~In ¢. The surface coverage can then In th'is case the sarr_1p|e is large enough so that the volume
be written fraction can be considered as constant even when the surface

density is large. The system is then equivalent to an infinite

_ ¢ (12) system coupled to an external reservoir, this last one keeping
bs= &+ e Bds the volume fraction constant. We see a crossover between a
) ) regime where the surface coverage increases linearly and an-
or from particle number conservation other regime in which the surface coverage is independent of
bom dd - 2ae, 13 thickness.
ST dd - 2a¢s+ (d - 2a)e™ (@ eI C. Equilibrium distribution of two kinds of neutral particles
The dilute regime folB=0 is of some interest. For a dilute In this section, we consider an infinite system composed
solution the chemical potentiB) is approximately of two neutral species which can both adsorb on a flat sur-
face.
o 1+2a/d(e"-1) We generalize the free-energy formulation designed in the
o ’ preceding section by writing the bulk contribution of the
) density free energy ikT units,
leading to
kT
6= 0] (14 f(d’Ayﬁi’B):? daln pa+ dln g+ (1 = da— ¢p)
1+2a/d(e*-1)
oy Pa2 Be o
and, at the surface, XIn(1 = pp= ¢s) > Pa > g~ edadp
~ ° (19
b5~ 2ald + e (1 - 2a/d)” — MaPa— Mpde (
Note that this relation can also be obtained from ). where ¢ is an interaction between the two species. At the
If d<?2ae”, ¢ is negligible and Eq(15) becomes surface, we have
~od. 16 kT
b= 23’ (16) fs(d’s,Avd’s,B) = ? d’s,A In d’s,A + ¢’s,B In ¢S,B +(1- ¢S,A
that is, the surface coverage increases linearly with the size = ¢sp)IN(L = Ppsp— Psp) — Apdsa— ApPsp
of the sample. Note that in papé] the same expression was 5 3
written as - ?A¢§,A - ?B¢§,B ~edsadsp ~ UaPsa
N
¢s=-—d, (17
° 2N, ~ HePsp (-

whereN is bulk density of particles in the absence of adsorp- o .

tion andN; is the surface density of sites. With the identifi- NOt€ the presence of the mixing entropic terh—-¢,
cations®=Na® and Ng=1/a? the two expression&l6) and  ~#8)IN(1-da—¢g) in these two expressions. This term is
(17) coincide. But as the authors {@] did not introduce a Very important since it avoids that two particles of different
lattice, expressiolil7) leads to the unphysical result—0  kind sit at the same place iq the Iattice. Its absence would
in the limit d—0, since the correct limitl— 2a is hidden. lead to the Fermi-Dira¢FD) distribution.

Note that this problem will be even more apparent in case of Minimizing the free energy, we obtain in the bulk

ionic adsorption. 1-¢g
In the opposite I|_m|to_l> 2ae” from Eq. (14) we deduce Pa= 1 + & iarPadareds)
for the volume fraction in the bulk
R o and
=120 1-¢a

o b8 = 1 + e (ug*Bedetedn)’
which imposesp2a/d<®. Actually, from Eq.(15) we see

that whereas at the surface we have
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1-¢ep solution of infinite size to a charged surface. In our case it is
Psa= 1 + & (“ataatBadsatedsp) rather the adsorption phenomenon which charges the sur-
faces. Within the mean-field approximation, the total free
and energy in the bulkf=u-Ts can be written in terms of the
1- local electrostatic potential iRT units, ¥(x)=eMx)/kT, and
hsp = = f’;’; oL the ion volume fractionp*(x). The electrostatic energy con-
" 1+e #BTaB P BPsBT e PsA tribution is
We thus see that the distributions of the two species are not KT AL
independent of each other, due to the mixing entropy. u=— dx{— L3l —| + ¢ Y- ¢ ped—u |,
Suppose now thai,> ag. We find IX
eﬂB+aB (18)
bsp =~ aatan <1 wheree is the dielectric constant of the solution, are the
equilibrium chemical potential of the two ions, ard;
and =\ekTa/2€? is the intrinsic length of the problem. Note that
1 we use the same system of units [8 which is different
bsp= Trornan’ from the one of10] whereLg=ekTa’/87€?. The first term

on the left-hand side of Eq18) is the self-energy of the
showing that only one specie adsorbs, the other staying in thlectric field; the next two terms are the electrostatic energy
bulk. One can check thag o+ ¢s g is always smaller than 1. of the ions. For the sake of simplicity we do not introduce an

Now, let us compare our result with the Fermi-Dirac dis- additional steric interaction. The entropic contribution is
tribution. In such a context, the distribution for the two spe-

ae KT
CIes 1S TS:_§f d)<[¢+ In ¢+ ¢-In ¢—+(1_¢+_ ¢—)
1
dap= 1 +eHAs XIn(1 -, = ¢)].
for the bulk and The first two terms represent the tanslational entropy of the
ions and the last term the entropy of mixing—i.e., the en-
B 1 tropy of the solvant molecules.

bsnp= 1 +e HAB B At the interface itself, the total free energy is obtained by

adding an electrostatic contributiabi s to Eq. (5):
for the surface. The two distributions are now completely

independent. In particular for the,>ag the sum ¢gp

+¢sp is Not guaranteed to be smaller than 1. This example
shows the importance of taking the mixing entropy into ac- . .t
count when more than one specie are present. + st 1 s} (19)

KT
fo(be.ths) = g{[qi In g + (1 - p)In(1 - )] - apg

The total free energy of the system is then

F(¢%)
S

Ill. IONIC ADSORPTION (d-2a)/2

= 2f (g, ) +J f(¢*(x), ¢(x))dx. (20)

—(d-2a)/2

The power of the free-energy formalism can also be ap-
plied to the ion distribution in an isotropic fluid limited by

two adsorbing surfaces. As explained[®,9], this system |54 humber conservation imposes equality between the two
has already been considered by several authors. Actuallghemical potentialsu,=u_=u. The variation of the bulk

ionic adsorption has been invoked to explain the thicknesgee energy with respect t* yields the volume fraction of
dependence of the anisotropic part of the anchoring energy,e ions in the bulk:

of the interface between a substrate and a nematic liquid
crystal. L e
Consider a slab of thickneskwith two identical adsorb- ¢ = h(ip, 1)
ing flat surfaces that adsorb only positive ions. Obviously the
liquid is globally neutral. However, due to the selective ionicand
adsorption, there is a distribution of charges yielding a non-
uniform electric potentiaV(x) across the sample. Since the ¢ =——
surfaces are identical—i.e., the affinities of the positive ions h(y,u)’
for the surfaces are identical—the potential is symmetric
V(x)=V(-x) andE=-dV/dxis vanishing at the middle of the where
sample. , , h(,u) = 1 + 26 coshy.
The total free energy for a symmetric electrolyte in the
mean-field approximation has already been introduced imNote that the distribution in the bulk is very different from
[10] in the context of the adsorption of large ions from athe FD distribution which reads

e'ﬂ""/’«

031101-4



FREE-ENERGY FORMALISM FOR PARTICLE ADSORPTION PHYSICAL REVIEW HElL, 031101(2009

+ 1 ¢0
F0= e @y SBotaman="

The variation of the bulk free energy with respecti/tgields In this case, we obtain the surface potential
the modified Poisson-BoltzmaiPB) equation introduced in

[10]: _2a 2 (L_\/E)
V=3 PV

V2= € sinhy
Lé h(y,w) and the surface coverage
This equation is similar to the expression given®). The 1
difference lies in the formula foh(,«) which is in [9]: bs= L o \25
h(i, w) =1+ 2e* coshyr+e 24, 1 +ea/3<_B_>
The variation of the total free energy with respect to Ls o
P(x=d/2) = ¢ yields the requirement of the overall charge in agreement wittfo]
neutrality: '
Y -1 B. Small-volume limit
o = dos, L. .
X |xzar2  Ls In the finite-volume case we have two conservation laws
where L,=a’ckT/€? is a caracteristic length of the surface 23 1 [(c-2a)2 Qv
introduced in[9]. Minimizing the surface free energy, <D=—¢S+—f —_— (23
yields d dJ _(g-2ay2 1 + 26" coshy)
1 (d-2a)/2
b= Traren @2 e (24
dJ_(g-2ay2 1 + 26" cosh(y))

which is a Fermi-Dirac distribution. ) o _
Note that a FD distribution is obtained fei~ when the L€t us consider the small-volume limit— 3a. Physically,
electrostatic potential is very high=1 since in this case, ~We cannot consider a smaller bound since the negative
charges are not adsorbed In particular, it is not possible to

- 1 take the limitd— 0.
¢ — 1+g Relation (24) becomes(assuminge’os 1, which will be
justified latej
whereas
d-2a e
g ey YT Tee
1+el+’
o . _ which leads to
It is instructive to analyze the behavior of the system for a
semi-infinite and very thin sample and then to compare the 1)) B
prediction of our model to the results obtained with the FD e= Te Yo,
distribution. 1- i ®
A. Infinite-volume limit Considering the approximation
In the infinite, volume limitd— «, we have a
oo ¢0 Us= o~ Lsd)s
2(1= o) and the fact thaa/Lg is very small, we can assume that
whereas
‘!’s% ‘/’O
ety = =20 in Eq. (22), so that
FD 2y in Eq. (22), so tha
due to the lack of mixing entropy. The generalized PB equa- b~ @ )
tion can be solved numerically to find the electric field and ° o+l _2_61_(1) a2y
the ion distributions across the sample. This has been done in * d €

[10] where interesting curves can be found.
It is only in the dilute case that the two chemical poten-Plugging this result in Eq(23) and using the fact that®
tials coincide and are equal to the Boltzman one: > 1 yields the electric potential
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/ d? 12
et = | ————Pbe ¥?,
2a(d - 2a) ©

which are the results obtained with a Maxwell-Boltzmann
distribution.
o _ An estimation of the parameter was given[®] for a
confirming our assumptiog’o> 1. typical nematic liquid crystale=~6 for an organic liquid

For the chemical potential we readily obtain limited by two glasses. The adsorption energy was evaluated
a~6 and for a typical molecule of radil®=40 A one has
Lg~30 A. The surface density was found to #elependent
for thickness smaller than 300 A.

elo =~ g2 (25)

(26)
IV. CONCLUSION

In this paper, we have proposed a free-energy formalism
to describe the phenomenon of the surface adsorption of neu-
tral and charged particles as well. This free-energy formalism

_do has led to an equilibrium particle distribution for the case of

bs= 23" the physical adsorption of neutral and charged particles from

solution onto two parallel adsorbing surfaces. In particular,

These results are very different from the one obtained byve have found the correct equations for the electric potential
Barberoet al. with the Fermi-Dirac distribution which are  and the equilibrium charge distribution with respect to the

2 thickness of the electrolyte sample in case of high bulk con-
elo ~ e_, centration and we recover the results obtained with the
Maxwell-Boltzmann distribution in the limit of small con-
centration.
ol ~ \@_ We are aware that our model relies on some strong as-

sumptions; in particular, the adsorbed particles are confined
These two last relations do not lead to the result obtainetb a monomolecular layer whereas multilayer adsorption is
with the Maxwell-Boltzman distribution used in the dilute frequently observed. Moreover, we have assumed that the
regime. In other words, the Fermi-Dirac distribution in the surface is homogenous which is obviously not the case in
limit of a small concentration does not lead to the correctgeneral.

Maxwell-Boltzman result. Nevertheless, one of the advantages of the free-energy
On the contratry, our equatiorf@5) and (26), for ®<1, formalism is that it relies on a minimization principle, avoid-
yield ing in this way the introduction o&d hocdistributions and
allowing straightforwardly the description of multiparticle
o cal2 |28 adsorption. Moreover, it can be extended to take into account
e¥0 = ¢ . . . . .
d-2a the particle interactions in the bulk and at the surface itself,
which are usually not considered. This generalization needs
and further investigation.
[1] A. W. Adamson,Physical Chemistry of Surfac€g/iley, New 5, 645(1989.
York, 1997. [7] G. Barbero and G. Durand, J. PhyRarig 51, 281(1990.
[2] J. IsraelachviliIntermolecular ForcegAcademic Press, Lon-  [8] A. L. Alexe-lonescu, G. Barbero, and A. G. Petrov, Phys. Rev.
don, 1985. E 48, R1631(1993.
[3] G. Barbero, A. K. Zvezdin, and L. R. Evangelista, Phys. Rev. [9] |. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett.
E 59, 1846(1999. 79, 435(1997).
[4] V. G. Nazarenko and O. D. Lavrentovich, Phys. RevAB  [10] G. Barbero, F. Batalioto, and L. R. Evangelista, Phys. Lett. A

R990(1994). ) 283 257 (200)).

[5] U. Kuhnau, A. G. Petrov, G. Klose, and H. Schmiedel, Phys.[11] i piamant, G. Ariel, and D. Andelman, Colloids Surf., A
Rev. E 59, 578(1999. 259 183(200).

[6] L. M. Blinov, A. Yu. Kabaenkov, and A. A. Sonin, Lig. Cryst.

031101-6



