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The equilibrium properties of particle adsorption is investigated theoretically. The model relies on a free-
energy formulation which allows us to generalize the Maxwell-Boltzmann description to solutions for which
the bulk volume fraction of potentially adsorbed particles is very high. As an application we consider the
equilibrium physical adsorption of neutral and charged particles from solution onto two parallel adsorbing
surfaces.
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I. INTRODUCTION

The adsorption phenomenon, due to the electrochemical
interaction between the particles of a system and a surface, is
present in many experimental setups, such as the adsorption
of a perfect gas on a surfacef1g or of charged particles in an
electrolytef2g. In many physical or chemical system, a better
understanding of the theoretical equilibrium properties of the
adsorbed particles on a surfacessee f3g and references
thereind would thus be useful to interpret the experiments.
Several works have been devoted to this question, and vari-
ous models of particle distributions have been proposed.
Among these, many assumed a Maxwell-Boltzman particle
distributionsseef3–5gd. Barberoet al. f3g, for instance, study
the ionic adsorption on a surface due to some electrochemi-
cal forces in order to determine the surface density of ad-
sorbed charges versus the thickness of the sample. This work
helps us to understand the thickness dependence of the an-
isotropic part of the anchoring energy experimentaly ob-
servedf6g in a nematic liquid cristalf4,7,8g.

However, a limit can be made about the Maxwell-
Boltzman distribution. Actually, this distribution can only
correctly describe the distribution properties in the dilute re-
gime. But even in this regime, the density is usually large at
the surface itself, exept when the affinity of the particle for
the surface is weak. To overcome the restriction to the first
limit—the dilute case—we propose to apply a free-energy
formalism to the study of the equilibrium properties of neu-
tral and charged particles adsorption onto two parallel ad-
sorbing surfaces. Another advantage of the free-energy for-
malism lies in the fact that it leads to the generalized
Poisson-Boltzmann equation introduced inf10g which takes
into account the finite size of the ions. In that paper the
behavior of electrolytes solutions close to a charged surface
was studied. In our work, the surface is rather charged by the
adsorption of one of the two charges present in the system.
Within our framework we obtain the electric potential distri-
bution from the generalized Poisson-Boltzmann equation, the
correct equations for the bulk particle distribution, and the
density of the particles on the surface with respect to the
thicknessd of the sample. For small thickness, thed depen-
dences of the electric potential and of the chemical potential
are determined and it is found that the surface density is

proportional to thickness, whereas in the limit of larged the
electric potential and the surface density are independent of
the thickness. It is nevertheless clear that the results obtained
with the phenomenological, coarse-grained free-energy for-
malism to systems approaching molecular dimension can
only be trusted as far as general trends are concerned.

It is important to note that in the context when several
kinds of particles are present in the system, as it would be in
an electrolyte, we find a particle distribution different from
the Fermi-Dirac-like distribution introduced inf9g. Actually,
the Fermi-Dirac distribution takes naturally into account the
occupation of the adsorption sites. Yet it misses the mixing
entropy contribution which is present in our formalism. As a
consequence, we show that in the limiting case of a weak
electrolyte, the results of the Poisson-Boltzmann approach
are recovered by our formalism but not by the Fermi-Dirac
distribution.

The paper is organized as follows. In Sec. II we introduce
the mean-field free-energy formalism for neutral particle in
an isotropic fluid limited by two adsorbing surfaces. In the
same section the case of the adsorption competition between
two neutral particles is studied. In Sec. III we generalize the
free-energy formalism to the study of the ionic adsorption in
a isotropic fluid limited by two adsorbing surfaces, already
studied by means of the Fermi-Dirac distribution inf3,9g.

II. NEUTRAL PARTICLE ADSORPTION

A. Theory of a lattice

ConsiderN neutral particles in a slab of thicknessd de-
limited by two surfaces of areaS. We divide the slab into
discrete cells of sizea3 sthe size of the particled, and each
cell is limited to a single-particle occupation. We callNb the
number of sites in the bulk andNs the number of surface
adsorption sites. In thermodynamic equilibrium,nb and ns
are the number of particles in the bulk and at the surface,
respectively. The volume fraction is thenf=nb/Nb and the
surface densityfs=ns/Nb. The conservation of the total
number of particleN=ns+nb is also written as

F = 2fs
a

d
+ fS1 −

2a

d
D , s1d

which is valid if the bulk volume fraction is uniform. If this
fraction is not uniformssee Sec. IIId, relations1d becomes
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F = 2fs
a

d
+

1

d
E

−sd−2ad/2

sd−2ad/2

fsxddx, s2d

whereF is the total volume fraction.

B. Free-energy formalism

We will use the free-energy formalism for the particle
adsorption. It was first introduced by Andelman and co-
workers sfor a review seef11gd to describe the kinetic ad-
sorption of surfactant. This theoretical approach was success-
fully applied to the kinetic of nonionic and ionic surfactant
adsorption as well as to the kinetic of surfactant mixture
adsorption. In this formalism, the two equations describing
both the diffusive transport of surfactant molecules from the
bulk solution to the interface and the kinetic of adsorption at
the interface itself are derived from a single functional. The
scope of the present paper is to apply the free-energy formal-
ism to the study of the equilibrium properties of particle
adsorption.

Following f11g we write the total free energy as a func-
tional of the volume fraction in the bulkfsxd and the density
at the interfacefs,

Fsfd
S

= 2fssfsd +E
−sd−2ad/2

sd−2ad/2

f(fsxd)dx, s3d

where the bulk free-energy density is written as

fsfd =
1

a3HkTFsf ln f + s1 − fdlns1 − fdg −
b̃

2
f2 − m̃fJ

s4d

and the surface free-energy density is equal to

fssfsd =
1

a2HkTffs ln fs + s1 − fsdlns1 − fsdg − ãfs −
b̃

2
fs

2

− m̃fsJ . s5d

the parameterã accounts for the energetic preference of the

particle to absorb on the surface.b̃ is the lateral interaction
between two adjacent charges. Note that the main difference
with the free energy introduced inf11g in the context of
surfactant adsorption lies in the presence of the exact en-
tropic term in Eq.s4d rather than on an approximate term.
Actually, below as well as above the critical micellar concen-
tration, the free-chain surfactant solution is always dilute, so
that a good approximation for the entropic term isS
=f ln f−f. Another difference is due the effect on the finite
volume: Eqs.s4d ands5d, m̃ is the chemical potential at equi-
librium. Its value is not imposed by an external reservoir but
is determined by the conservation equations1d. In the infinite
volume case considered inf11g, the chemical potential is
imposed by an external reservoir localized at infinity. This
last condition imposes the equilibrium bulk volume fraction.

The variation ofF with respect tofsxd, that is,

dF

dfsxd
= 0,

yields the bulk equilibrium volume fraction

fsxd = f =
1

1 + e−m−bf , s6d

in which we introduce the dimensional quantitiesb=b̃ /kT
andm=m̃ /kT. At the surface the condition

dF

dfs
= 0

yields the equilibrium adsorption isotherm

fs =
1

1 + e−m−a+bfs
, s7d

with a=ã /kT.
Considering the caseb=0, we find the Fermi-Dirac dis-

tribution that can also be written as

fs =
f

f + s1 − fde−a .

For b=0, the number of particle conservations1d allows us
to compute analytically the chemical potential:

e−m = − a + Îa2 + b, s8d

where

a =
fF − s1 − 2a/ddg + sF − 2a/ddea

2F
, s9d

b =
s1 − Fd

F
ea. s10d

Note that ford=2a we can check thate−m=eas1−Fd /F
which leads to the expected resultfs=F, since all particles
are localized on the surfaces.

1. CaseFš2a/d

The condition

1 . F @ 2a/d s11d

yields for the chemical potential

e−m =
s1 − Fd

F

and a bulk volume fraction of

f = F.

Condition s11d implies a negligible variation of the equilib-
rium volume fraction after the adsorption process. At the
surfaces,

fs =
F

F + s1 − Fde−a

is independent of the sized. Even if the surface density of
particles is large, the sample is large enough to ensure that
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the bulk volume fraction does not change. This result can
also be obtained from the particle number conservation equa-
tion s1d, F=2fsa/d+fs1−2a/dd, which in the limit d→`
givesf=F.

2. CaseF™2a/d

This condition corresponds to a dilute regimeF!1,
wheref!1 so thatm< ln f. The surface coverage can then
be written

fs =
f

f + e−a+bfs
s12d

or from particle number conservation

fs =
dF − 2afs

dF − 2afs + sd − 2ade−sa+bfsd/T
. s13d

The dilute regime forb=0 is of some interest. For a dilute
solution the chemical potentials8d is approximately

e−m <
1 + 2a/dsea − 1d

F
,

leading to

f <
F

1 + 2a/dsea − 1d
s14d

and, at the surface,

fs <
F

2a/d + e−as1 − 2a/dd
. s15d

Note that this relation can also be obtained from Eq.s13d.
If d!2aea, f is negligible and Eq.s15d becomes

fs < F
d

2a
; s16d

that is, the surface coverage increases linearly with the size
of the sample. Note that in paperf9g the same expression was
written as

fs .
N

2Ns
d, s17d

whereN is bulk density of particles in the absence of adsorp-
tion andNs is the surface density of sites. With the identifi-
cationsF=Na3 and Ns=1/a2 the two expressionss16d and
s17d coincide. But as the authors off9g did not introduce a
lattice, expressions17d leads to the unphysical resultfs→0
in the limit d→0, since the correct limitd→2a is hidden.
Note that this problem will be even more apparent in case of
ionic adsorption.

In the opposite limitd@2aea from Eq. s14d we deduce
for the volume fraction in the bulk

f <
F

1 − 2a/d
< F,

which imposesfs2a/d!F. Actually, from Eq.s15d we see
that

fs <
F

e−a ,

from which we deduce

fs
2a

d
! F.

In this case the sample is large enough so that the volume
fraction can be considered as constant even when the surface
density is large. The system is then equivalent to an infinite
system coupled to an external reservoir, this last one keeping
the volume fraction constant. We see a crossover between a
regime where the surface coverage increases linearly and an-
other regime in which the surface coverage is independent of
thickness.

C. Equilibrium distribution of two kinds of neutral particles

In this section, we consider an infinite system composed
of two neutral species which can both adsorb on a flat sur-
face.

We generalize the free-energy formulation designed in the
preceding section by writing the bulk contribution of the
density free energy inkT units,

fsfA,fBd =
kT

a3HfA ln fA + fB ln fB + s1 − fA − fBd

3lns1 − fA − fBd −
bA

2
fA

2 −
bB

2
fB

2 − «fAfB

− mAfA − mBfBJ ,

where « is an interaction between the two species. At the
surface, we have

fssfs,A,fs,Bd =
kT

a3Hfs,A ln fs,A + fs,B ln fs,B + s1 − fs,A

− fs,Bdlns1 − fs,A − fs,Bd − aAfs,A − aBfs,B

−
bA

2
fs,A

2 −
bB

2
fs,B

2 − «fs,Afs,B − mAfs,A

− mBfs,BJ .

Note the presence of the mixing entropic terms1−fA

−fBdlns1−fA−fBd in these two expressions. This term is
very important since it avoids that two particles of different
kind sit at the same place in the lattice. Its absence would
lead to the Fermi-DiracsFDd distribution.

Minimizing the free energy, we obtain in the bulk

fA =
1 − fB

1 + e−smA+bAfA+«fBd

and

fB =
1 − fA

1 + e−smB+bBfB+«fAd ,

whereas at the surface we have

FREE-ENERGY FORMALISM FOR PARTICLE ADSORPTION PHYSICAL REVIEW E71, 031101s2005d

031101-3



fs,A =
1 − fs,B

1 + e−smA+aA+bAfs,A+«fs,Bd

and

fs,B =
1 − fs,A

1 + e−smB+aB+bBfs,B+«fs,Ad .

We thus see that the distributions of the two species are not
independent of each other, due to the mixing entropy.

Suppose now thataA@aB. We find

fs,B <
emB+aB

emA+aA
! 1

and

fs,A =
1

1 + e−mA−aA
,

showing that only one specie adsorbs, the other staying in the
bulk. One can check thatfs,A+fs,B is always smaller than 1.

Now, let us compare our result with the Fermi-Dirac dis-
tribution. In such a context, the distribution for the two spe-
cies is

fA,B =
1

1 + e−mA,B

for the bulk and

fs,A,B =
1

1 + e−mA,B−aA,B

for the surface. The two distributions are now completely
independent. In particular for theaA@aB the sum fs,A
+fs,B is not guaranteed to be smaller than 1. This example
shows the importance of taking the mixing entropy into ac-
count when more than one specie are present.

III. IONIC ADSORPTION

The power of the free-energy formalism can also be ap-
plied to the ion distribution in an isotropic fluid limited by
two adsorbing surfaces. As explained inf3,9g, this system
has already been considered by several authors. Actually,
ionic adsorption has been invoked to explain the thickness
dependence of the anisotropic part of the anchoring energy
of the interface between a substrate and a nematic liquid
crystal.

Consider a slab of thicknessd with two identical adsorb-
ing flat surfaces that adsorb only positive ions. Obviously the
liquid is globally neutral. However, due to the selective ionic
adsorption, there is a distribution of charges yielding a non-
uniform electric potentialVsxd across the sample. Since the
surfaces are identical—i.e., the affinities of the positive ions
for the surfaces are identical—the potential is symmetric
Vsxd=Vs−xd andE=−dV/dx is vanishing at the middle of the
sample.

The total free energy for a symmetric electrolyte in the
mean-field approximation has already been introduced in
f10g in the context of the adsorption of large ions from a

solution of infinite size to a charged surface. In our case it is
rather the adsorption phenomenon which charges the sur-
faces. Within the mean-field approximation, the total free
energy in the bulkf =u−Ts can be written in terms of the
local electrostatic potential inkT units, csxd=eVsxd /kT, and
the ion volume fractionf±sxd. The electrostatic energy con-
tribution is

u =
kT

a3E dxF− LB
2U ]c

]x
U2

+ f+c − f−c − m+f+ − m−f−G ,

s18d

where« is the dielectric constant of the solution,m± are the
equilibrium chemical potential of the two ions, andLB

=Î«kTa3/2e2 is the intrinsic length of the problem. Note that
we use the same system of units asf9g which is different
from the one off10g whereLB=Î«kTa3/8pe2. The first term
on the left-hand side of Eq.s18d is the self-energy of the
electric field; the next two terms are the electrostatic energy
of the ions. For the sake of simplicity we do not introduce an
additional steric interaction. The entropic contribution is

Ts= −
kT

a3E dxff+ ln f+ + f− ln f− + s1 − f+ − f−d

3lns1 − f+ − f−dg.

The first two terms represent the tanslational entropy of the
ions and the last term the entropy of mixing—i.e., the en-
tropy of the solvant molecules.

At the interface itself, the total free energy is obtained by
adding an electrostatic contributionfs

+cs to Eq. s5d:

fssfs
+,csd =

kT

a2 hffs
+ ln fs

+ + s1 − fs
+dlns1 − fs

+dg − afs
+

+ fs
+cs − m+fs

+j. s19d

The total free energy of the system is then

Fsf±d
S

= 2fssfs
+,csd +E

−sd−2ad/2

sd−2ad/2

f(f±sxd,csxd)dx. s20d

Ion number conservation imposes equality between the two
chemical potentialsm+=m−=m. The variation of the bulk
free energy with respect tof± yields the volume fraction of
the ions in the bulk:

f+ =
e−c+m

hsc,md

and

f− =
ec+m

hsc,md
,

where

hsc,md = 1 + 2em coshc.

Note that the distribution in the bulk is very different from
the FD distribution which reads
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fFD
± =

1

1 + e−m±c . s21d

The variation of the bulk free energy with respect toc yields
the modified Poisson-BoltzmansPBd equation introduced in
f10g:

¹2c =
em

LB
2

sinhc

hsc,md
.

This equation is similar to the expression given inf9g. The
difference lies in the formula forhsc ,md which is in f9g:
hsc ,md=1+2em coshc+e−2m.

The variation of the total free energy with respect to
csx=d/2d;cs yields the requirement of the overall charge
neutrality:

U ]c

]x
U

x=d/2
=

− 1

Ls
fs,

where Ls=a2«kT/e2 is a caracteristic length of the surface
introduced in f9g. Minimizing the surface free energyfs
yields

fs =
1

1 + ec−a−m , s22d

which is a Fermi-Dirac distribution.
Note that a FD distribution is obtained forf− when the

electrostatic potential is very highcù1 since in this case,

f− → 1

1 + e−c−m ,

whereas

f+ → e−2cf− Þ
1

1 + ec−m .

It is instructive to analyze the behavior of the system for a
semi-infinite and very thin sample and then to compare the
prediction of our model to the results obtained with the FD
distribution.

A. Infinite-volume limit

In the infinite, volume limitd→`, we have

em =
f0

2s1 − f0d
,

whereas

eFD
m =

f0

2 − f0

due to the lack of mixing entropy. The generalized PB equa-
tion can be solved numerically to find the electric field and
the ion distributions across the sample. This has been done in
f10g where interesting curves can be found.

It is only in the dilute case that the two chemical poten-
tials coincide and are equal to the Boltzman one:

eBoltzman
m =

f0

2
.

In this case, we obtain the surface potential

cs =
2a

3
+

2

3
lnSLB

Ls

Îf0

2
D

and the surface coverage

fs =
1

1 + ea/3SLB

Ls

2

f0
D2/3,

in agreement withf9g.

B. Small-volume limit

In the finite-volume case we have two conservation laws

F =
2a

d
fs +

1

d
E

−sd−2ad/2

sd−2ad/2 em−c

1 + 2em coshscd
, s23d

F =
1

d
E

−sd−2ad/2

sd−2ad/2 em+c

1 + 2em coshscd
. s24d

Let us consider the small-volume limitd→3a. Physically,
we cannot consider a smaller bound since the negative
charges are not adsorbed In particular, it is not possible to
take the limitd→0.

Relation s24d becomessassumingec0@1, which will be
justified laterd

F <
d − 2a

d

em+c0

1 + em+c0
,

which leads to

em =
F

1 −
2a

d
− F

e−c0.

Considering the approximation

cs < c0 −
a

Ls
fs

and the fact thata/Ls is very small, we can assume that

cs < c0

in Eq. s22d, so that

fs <
F

F + S1 −
2a

d
− FDe−a+2c0

.

Plugging this result in Eq.s23d and using the fact thatea

@1 yields the electric potential
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ec0 < ea/2Î 2a

d
− F

1 −
2a

d
− F

, s25d

confirming our assumptionec0@1.
For the chemical potential we readily obtain

em <
F

1 −
2a

d
− F
Î1 −

2a

d
− F

2a

d
− F

e−a/2, s26d

and for the surface coverage we find

fs <
dF

2a
.

These results are very different from the one obtained by
Barberoet al. with the Fermi-Dirac distribution which are

ec0 ,
ea/2

d
,

em , ÎF.

These two last relations do not lead to the result obtained
with the Maxwell-Boltzman distribution used in the dilute
regime. In other words, the Fermi-Dirac distribution in the
limit of a small concentration does not lead to the correct
Maxwell-Boltzman result.

On the contratry, our equationss25d and s26d, for F!1,
yield

ec0 < ea/2Î 2a

d − 2a

and

em <Î d2

2asd − 2ad
Fe−a/2,

which are the results obtained with a Maxwell-Boltzmann
distribution.

An estimation of the parameter was given inf9g for a
typical nematic liquid crystalse<6 for an organic liquidd
limited by two glasses. The adsorption energy was evaluated
a<6 and for a typical molecule of radiusR<40 Å one has
LB<30 Å. The surface density was found to bed dependent
for thickness smaller than 300 Å.

IV. CONCLUSION

In this paper, we have proposed a free-energy formalism
to describe the phenomenon of the surface adsorption of neu-
tral and charged particles as well. This free-energy formalism
has led to an equilibrium particle distribution for the case of
the physical adsorption of neutral and charged particles from
solution onto two parallel adsorbing surfaces. In particular,
we have found the correct equations for the electric potential
and the equilibrium charge distribution with respect to the
thickness of the electrolyte sample in case of high bulk con-
centration and we recover the results obtained with the
Maxwell-Boltzmann distribution in the limit of small con-
centration.

We are aware that our model relies on some strong as-
sumptions; in particular, the adsorbed particles are confined
to a monomolecular layer whereas multilayer adsorption is
frequently observed. Moreover, we have assumed that the
surface is homogenous which is obviously not the case in
general.

Nevertheless, one of the advantages of the free-energy
formalism is that it relies on a minimization principle, avoid-
ing in this way the introduction ofad hocdistributions and
allowing straightforwardly the description of multiparticle
adsorption. Moreover, it can be extended to take into account
the particle interactions in the bulk and at the surface itself,
which are usually not considered. This generalization needs
further investigation.
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